Estimation of Catherine Creek Chinook Salmon Reach-Specific Survival During Spring Emigration

Scott Favrot and Brian Jonasson

Oregon Department of Fish and Wildlife

Northeast Fish Research

Acknowledgments

ODFW

Kyle Bratcher Jesse Steele **Matt Saladin** Ian Wilson **Denae Himes** Jeff Yanke Joseph Feldhaus **Robbette Schmit Nick Albrecht Shelby Warren**

ODFW

Owen Davis
Kristen Cathey
Brad Power
Marika Dobos
Marissa Ticus
Ryan Lande
Ashley Davidson
Eric Shoudel
Jeff Whitty

USBR

Jeff Mclaughlin
Rick Reiber
Darrell Dyke
Lindsey McQuisten
Larne Sheehy
CTUIR

Funding

USBR BPA

Jason Grant Allen Childs Laurie Hewitt

Catherine Creek: Background

- Consistently, late migrant Catherine Creek juvenile
 Chinook salmon smolts experience lower survival to
 Lower Granite Dam (LGD) compared to neighboring
 populations (e.g., Lostine and Minam) within the Grande
 Ronde River Subbasin.
- Late migrants that successfully migrate through the Grande Ronde Valley exhibit high survival to LGD, indicating that Catherine Creek smolts experience high mortality within the Grande Ronde Valley.

Background – Late Migrant Survival

Background

- Consistently, late migrant Catherine Creek juvenile
 Chinook salmon smolts experience lower survival to
 Lower Granite Dam (LGD) compared to neighboring
 populations (e.g., Lostine and Minam) within the Grande
 Ronde River Subbasin.
- Late migrants that successfully migrate through the Grande Ronde Valley exhibit high survival to LGD, indicating that Catherine Creek smolts experience high mortality within the Grande Ronde Valley.

Study Area

Objective

1. Estimate reach specific survival for Catherine Creek late migrant juvenile spring Chinook salmon during outmigration

Methods

Spring radiotelemetry

Surgery

- Spring 2011 181 fish tagged
- Spring 2012 111 fish tagged
- Spring 2013 68 fish tagged
- March May
- Fish weight ≥ 8.5 g
- Continuous duty cycle

Tracking

- 9 Stationary receivers
- Union to Elgin
- Aerial/Boat tracking

Data Analysis

- Mark-recapture data set
- Cormack-Jolly-Seber model

Results-Raw Data

Receiver Site	Unique Detections			Detection Efficiency		
	2011	2012	2013	2011	2012	2013
Pyles Creek	152	94	49	0.93	0.98	0.93
Davis Dam	140	86	45	0.99	0.98	0.97
Mill Creek	86	52	30	0.94	0.98	0.96
Elmer Dam	70	42	24	1.00	1.00	0.93
CC Mouth	51	21	14	0.86	0.72	0.93
Imbler	52	29	13	0.88	0.97	0.93
Indian Creek	59	29	10	N/A	N/A	N/A

Bird Predation					
Year	# Detected	% Detected			
2011	17	9.4%			
2012	6	5.4%			
2013	8	11.8%			

Size Vs. Survival 0.6 2011 ■Undetected (n = 125) 0.5 **Detected (n = 59)** 0.4 U = 28960.3 P = 0.01900.2 0.1 0 0.6 2012 **Proportion** ■ Undetected (n = 82) 0.5 Detected (n = 29) 0.4 U = 1056 0.3 P = 0.37100.2 0.1 0 0.6 2013 0.5 ■ Undetected (n = 55) Detected (n = 13) 0.4 U = 4260.3 P = 0.83600.2 0.1 0 105 95 100 110 115 90 115+ Fork length (mm)

Discharge **Detections** 2011 2012 2013 0.3 0.2 0.1 0.3 0.2 0.1 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.1 0.3 0.2 0.3 0.2 0.1 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 200 200 **Catherine Creek Catherine Creek Catherine Creek Grande Ronde River** 150 150 Grande Ronde River Grande Ronde River 100 100 50 50

July

March

April

May

June

July

June

0.3 0.2 0.1

0.3 0.2 0.1

0.3 0.2

0.3 0.2

0.3

0.3 0.2

0.3 0.2

0.3 0.2

200

150

(cms)

March

May

April

July

March

April

May

June

Discharge

Proportion

Why The Gap In Detections?

Why The Gap In Detections?

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Catherine Creek juv. spring Chinook salmon emigration temporarily stops, coinciding with Grande Ronde River peak spring flows
- Travel time is high throughout Catherine
 Creek, and low in the Grande Ronde River
- Mortality per RKM is relatively high throughout Catherine Creek, while very low in the Grande Ronde River

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Catherine Creek juv. spring Chinook salmon emigration temporarily stops, coinciding with Grande Ronde River peak spring flows
- Travel time is high throughout Catherine
 Creek, and low in the Grande Ronde River
- Mortality per RKM is relatively high throughout Catherine Creek, while very low in the Grande Ronde River

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Catherine Creek juv. spring Chinook salmon emigration temporarily stops, coinciding with Grande Ronde River peak spring flows
- Travel time is high throughout Catherine
 Creek, and low in the Grande Ronde River
- Mortality per RKM is relatively high throughout Catherine Creek, while very low in the Grande Ronde River

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Catherine Creek juv. spring Chinook salmon emigration temporarily stops, coinciding with Grande Ronde River peak spring flows
- Travel time is high throughout Catherine
 Creek, and low in the Grande Ronde River
- Mortality per RKM is relatively high throughout Catherine Creek, while very low in the Grande Ronde River

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Catherine Creek juv. spring Chinook salmon emigration temporarily stops, coinciding with Grande Ronde River peak spring flows
- Travel time is high throughout Catherine
 Creek, and low in the Grande Ronde River
- Mortality per RKM is relatively high throughout Catherine Creek, while very low in the Grande Ronde River

Estimation of Grande Ronde River Chinook Salmon Reach-Specific Survival During Spring Emigration

Grande Ronde River: Background

- Consistently, late migrant Grande Ronde River juvenile Chinook salmon smolts experience lower survival to Lower Granite Dam (LGD) compared to neighboring populations (e.g., Lostine and Minam) within the Grande Ronde River Subbasin.
- Late migrants that successfully migrate through the Grande Ronde Valley exhibit high survival to LGD, indicating that Grande Ronde River smolts experience high mortality within the Grande Ronde Valley.

Background – Late Migrant Survival

Grande Ronde River: Background

- Consistently, late migrant Grande Ronde River juvenile Chinook salmon smolts experience lower survival to Lower Granite Dam (LGD) compared to neighboring populations (e.g., Lostine and Minam) within the Grande Ronde River Subbasin.
- Late migrants that successfully migrate through the Grande Ronde Valley exhibit high survival to LGD, indicating that Grande Ronde River smolts experience high mortality within the Grande Ronde Valley.

Study Area

Objective

 Estimate reach specific survival for Grande Ronde River late migrant juvenile spring Chinook salmon during outmigration

Methods

Spring radiotelemetry Surgery

- Spring 2015–200 fish tagged
- March May
- Fish weight ≥ 8.5 g
- Continuous duty cycle
- 9-cm trailing antenna

Tracking

- 9 Stationary receivers
- Starkey to Elgin
- Boat tracking (Heron rookery)

Data Analysis

- Mark-recapture data set
- Cormack-Jolly-Seber model

Results-Raw Data

Receiver Site	Unique Detections			Detection Efficiency		
	2015	2016	2017	2015	2016	2017
Starkey	152	_	-	N/A	-	_
Red Bridge	145	_	_	0.99	_	_
Hilgard	134	_	_	0.99	_	_
La Grande, OR	125	_	_	0.97	_	_
Island City, OR	110	_	_	0.99	_	_
CC mouth	87	_	_	0.96	_	_
Imbler, OR	75	_	_	0.96	_	_
Indian Creek	71	_	_	1.00	_	_
Gordon Creek	65	_	_	N/A	_	_

Bird Predation						
Year	Detected (#)	Detected (%)				
2015	2	1.0%				
2016	-	-				
2017	-	-				

Discharge Vs. Detections 2015 2016 2017 0.3 0.2 0.1 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.2 0.2 0.1 0.3 0.2 0.3 0.3 0.2 0.2 Proportion 0.3 0.3 0.3 0.2 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.2 0.1 30 30 30 25 25 **Catherine Creek** 25 Grande Ronde River 20 20 20 Discharge 15 15 15 (cms) 10 10 10 March July **April** May June March April May June July March **April** Mav June July

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Contrary to Catherine Creek, no pause in emigration was observed during peak Grande Ronde River flows
- Travel time is moderate both upstream and downstream of the Catherine Creek mouth
- Mortality per RKM is relatively low upstream of the Grande Ronde Valley, but high throughout the Grande Ronde Valley

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Contrary to Catherine Creek, no pause in emigration was observed during peak Grande Ronde River flows
- Travel time is moderate both upstream and downstream of the Catherine Creek mouth
- Mortality per RKM is relatively low upstream of the Grande Ronde Valley, but high throughout the Grande Ronde Valley

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Contrary to Catherine Creek, no pause in emigration was observed during peak Grande Ronde River flows
- Travel time is moderate both upstream and downstream of the Catherine Creek mouth
- Mortality per RKM is relatively low upstream of the Grande Ronde Valley, but high throughout the Grande Ronde Valley

- Large naturally produced spring Chinook salmon emigrate significantly faster than those smaller
- Contrary to Catherine Creek, no pause in emigration was observed during peak Grande Ronde River flows
- Travel time is moderate both upstream and downstream of the Catherine Creek mouth
- Mortality per RKM is relatively low upstream of the Grande Ronde Valley, but high throughout the Grande Ronde Valley